Home > Database > Robust Query Processing in Database Systems*

Robust Query Processing in Database Systems*

Bibliography

[1] M. Abhirama, S. Bhaumik, A. Dey, H. Shrimal and J. Haritsa, “On the Stability of Plan Costs and the Costs of Plan Stability”, PVLDB Journal, 3(1), 2010.
[2] A. Aboulnaga and S. Chaudhuri, “Self-tuning Histograms: Building Histograms Without Looking at Data”, Prod. of ACM SIGMOD Intl. Conf. of Management of Data, 1999.
[3] M. Akdere, U. Cetintemel, M. Riondato, E. Upfal and S. Zdonik, “Learning-based query performance modeling and prediction”, Proc. of IEEE Intl. Conf. on Data Engineering (ICDE), 2012.
[4] R. Avnur and J. Hellerstein, “Eddies: Continuously Adaptive Query Processing”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 2000.
[5] B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer: A Principled and Practical Approach”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 2005.
[6] S. Babu, P. Bizarro, and D. DeWitt, “Proactive re-optimization”, ACM SIGMOD Intl. Conf. on Management of Data, 2005.
[7] R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski and C. Fraser, “Smooth Scan: Statistics-oblivious access paths”, Proc. of IEEE Intl. Conf. on Data Engineering (ICDE), 2015.
[8] S. Chaudhuri, “An Overview of Query Optimization in Relational Systems”, Proc. of ACM Symp. on Principles of Database Systems (PODS), 1998.
[9] S. Chaudhuri, “Query Optimizers: Time to rethink the contract?”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 2009.
[10] S. Chaudhuri, Interview in ACM XRDS, 19(1), 2012.
[11] S. Chen, P. Gibbons, and S. Nath, “Rethinking Database Algorithms for Phase Change Memory”, Proc. of 5th Biennial Conf. on Innovative Data Systems Research (CIDR), 2011.
[12] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost Query Optimization: An Exercise in Utility”, Proc. of ACM Symp. on Principles of Database Systems (PODS), 1999.
[13] F. Chu, J. Halpern and J. Gehrke, “Least Expected Cost Query Optimization: What can we expect?”, Proc. of ACM Symp. on Principles of Database Systems (PODS), 2002.
[14] E. Codd, “A Relational Model of Data for Large Shared Data Banks”, Comm. of the ACM , 13 (6), 1970.
[15] A. Deshpande, Z. Ives and V. Raman, “Adaptive Query Processing”, Foundations and Trends in Databases, Now Publishers, 1 (1), 2007.
[16] D. DeWitt, Interview in ACM Sigmod Record, 31(2), 2002. [17] A. Dutt and J. Haritsa, “Plan Bouquets: A Fragrant Approach to Robust Query Processing”, ACM Trans. on Database Systems (TODS), 41(2), 2016.
[17] A. Dutt and J. Haritsa, “Plan Bouquets: A Fragrant Approach to Robust Query Processing”, ACM Trans. on Database Systems (TODS), 41(2), 2016.
[18] A. Dutt, V. Narasayya and S. Chaudhuri, “Leveraging re-costing for online optimization of parameterized queries with guarantees”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 2016.
[19] G. Graefe, “Query evaluation techniques for large databases”, ACM Computing Surveys, 25(2), 1993.
[20] J. Gray, “The Transaction Concept: Virtues and Limitations”, Proc. of 7th Intl. Conf. on Very Large Data Bases (VLDB), 1981.
[21] G. Graefe, “New algorithms for join and grouping operations”, Computer Science – R&D, 27(1), 2012.
[22] J. Haritsa, “The Picasso Database Query Optimizer Visualizer”, PVLDB Journal, 3(2), 2010.
[23] J. Haritsa, “Plan Diagrams: Visualizing Database Query Optimizers”, Annals of Indian National Academy of Engineering (INAE), Volume VIII, 2011.
[24] D. Harish, P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”, Proc. of 31st Intl. Conf. on Very Large Data Bases (VLDB), 2007.
[25] D. Harish, P. Darera and J. Haritsa, “Identifying Robust Plans through Plan Diagram Reduction”, PVLDB Journal, 1(1), 2008.
[26] F. Hueske, “Specification and Optimization of Analytical Data Flows”, PhD Thesis, 2016. depositonce.tu-berlin.de/bitstream/11303/5482/4/hueske_fabian.pdf
[27] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear and Piecewise Linear Cost Functions”, Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB), 2002.
[28] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Parametric Query Optimization for Nonlinear Cost Functions”, Proc. of 29th Intl. Conf. on Very Large Data Bases (VLDB), 2003.
[29] Y. Ioannidis and S. Christodoulakis, “On the propagation of errors in the size of join results”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1991.
[30] N. Kabra and D. DeWitt, “Efficient Mid-query Re-optimization of Sub-optimal Query Execution Plans”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1998.
[31] S. Karthik, J. Haritsa, S. Kenkre, V. Pandit and L. Krishnan, “Platform-independent Robust Query Processing”, IEEE Trans. on Knowledge and Data Engineering (TKDE), 2017.
[32] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kempers and T. Neumann, “How Good are Query Optimizers, Really?”, PVLDB Journal, 9(3), 2015.
[33] V. Leis, B. Radke, A. Gubichev, A. Kempers and T. Neumann, “Cardinality Estimation DoneRight: Index-based Join Sampling”, Proc. of Conf. on Innovative Data Systems Research (CIDR), 2017.
[34] G. Lohman, “Is Query Optimization a â˘AIJSolvedâ˘A˙I Problem?”, wp.sigmod.org/?p=1075.
[35] L. Mackert and G. Lohman, “R Optimizer Validation and Performance Evaluation for Local Queries”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1986.
[36] T. Malik, R. Burns and N. Chawla, “A Black-Box Approach to Query Cardinality Estimation”, Proc. of Conf. on Innovative Data Systems Research (CIDR), 2007.
[37] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic, “Robust query processing through progressive optimization”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 2004.
[38] G. Moerkotte, T. Neumann and G. Steidl, “Preventing Bad Plans by Bounding the Impact of Cardinality Estimation Errors”, PVLDB Journal, 2(1), 2009.
[39] T. Neumann and C. Galindo-Legaria, “Taking the Edge off Cardinality Estimation Errors using Incremental Execution”, Proc. of BTW Conf., 2013.
[40] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimizers”, Proc. of 31st Intl. Conf. on Very Large Data Bases (VLDB)., 2005.
[41] W. Rodiger, S. Idicula, A. Kemper and T. Neumann, “Flow-join: Adaptive skew handling for distributed joins over high-speed networks”, Proc. of IEEE Intl. Conf. on Data Engineering (ICDE), 2016.
[42] P. Selinger, P. Griffiths, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. “Access Path Selection in a Relational Database Management System”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1979.
[43] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO – DB2’s LEarning Optimizer”, Proc. of 27th Intl. Conf. on Very Large Data Bases (VLDB), 2001.
[44] K. Tzoumas, A. Deshpande and C. Jensen, “Lightweight graphical models for selectivity estimation without independence assumptions”, PVLDB Journal, 4(11), 2011.
[45] K. Tzoumas, A. Deshpande and C. Jensen, “Efficiently adapting graphical models for selectivity estimation”, VLDB Journal, 22(1), 2013.
[46] W. Wu, Y. Chi, H. Hacigumus and J. Naughton, “Towards predicting query execution time for concurrent and dynamic databae workloads”, PVLDB Journal, 6(10), 2013.
[47] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigumus and J. Naughton, “Predicting query execution time: Are optimizer cost models really unusable?”, Proc. of IEEE Intl. Conf. on Data Engineering (ICDE), 2012.
[48] W. Wu, X. Wu, H. Hacigumus and J. Naughton, “Uncertainty Aware Query Execution Time Prediction”, PVLDB Journal, 7(14), 2014.
[49] Dagstuhl Seminar on Robust Query Processing, 2010.
www.dagstuhl.de/en/program/calendar/semhp/?semnr=10381
[50] Dagstuhl Seminar on Robust Query Processing, 2012.
www.dagstuhl.de/en/program/calendar/semhp/?semnr=12321
[51] Dagstuhl Seminar on Robust Query Processing, 2017.
www.dagstuhl.de/en/program/calendar/semhp/?semnr=17222
[52] Database Systems Lab, IISc. dsl.cds.iisc.ac.in
[53] DB2. www.ibm.com/db2
[54] MySQL. www.mysql.com
[55] Oracle. www.oracle.com/technology/products/database/oracle11gbitem
[56] PostgreSQL. www.postgresql.org
[57] SQL. en.wikipedia.org/wiki/SQL:2008
[58] SQLServer. www.microsoft.com/sqlserver/2008/
[59] TPC-H Benchmark. www.tpc.org/tpch
[60] TPC-DS Benchmark. www.tpc.org/tpcds

Pages ( 9 of 9 ): « Previous1 ... 78 9

Leave a Comment:

Your email address will not be published. Required fields are marked *