Home > Issue_04 > The Essence of Quantum Computing

The Essence of Quantum Computing

9. References (for Part I)

Cited URLs were last accessed on 31 January 2018.

[1] Aaronson (2013). Aaronson, S. The Ghost in the Quantum Turing Machine. arXiv:1306.0159v2 [quant-ph], 07 June 2013. https://arxiv.org/abs/1306.0159

[2] Abbott, et al (2016). Abbott, B. P., et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, PRL 116, 061102, 2016. https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.116.061102

[3] Al-Kahlili (2003). Al-Kahlili, J. Quantum. Weidenfeld & Nicolson, London, 2003.

[4] Aspect (1991). Aspect, A. Testing Bell’s Inequalities. Europhys. News, 22, 73-75, 1991. https://www.europhysicsnews.org/articles/epn/pdf/1991/04/epn19912204p73.pdf

[5] Aspect, Dalibart & Roger (1982). Aspect, A., Dalibart, J., and Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analysers. Physical Review Letters, 49, 1804-1807, 1982. https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.49.1804

[6] Barenco, et al (1995). Barenco, A., et al. Elementary Gates for Quantum Computation. arXiv:quant-ph/9503016v1, 23 March 1995. https://arxiv.org/pdf/quant-ph/9503016v1.pdf Also as: Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., and Weinfurter, H. Elementary Gates for Quantum Computation. Physical Review A, 52, 3457-3467, 1995.

[7] Bell (1964). Bell, J. S. On the Einstein-Podolsky-Rosen Paradox. Physics, 1, 195-200, 1964. http://inspirehep.net/record/31657/files/vol1p195-200_001.pdf (Reprinted in Bell, J. S. Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 1987.

[8] Bennett (1973). Bennett, C. H. Logical Reversibility of Computation. IBM Journal of Research and Development, 17, 525–532, November 1973. https://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2013W/Bennett_Reversibiity.pdf

[9]Bennett. (1982). Bennet, C. H. The Thermodynamics of Computation – A Review. International Journal of Theoretical Physics, 21, 905–940, 1982. https://www.cc.gatech.edu/computing/nano/documents/Bennett%20-%20The%20Thermodynamics%20Of%20Computation.pdf. Reprinted in Leff & Rex (1990). Leff, H. S., and Rex, A. F. (Eds). Maxwell’s Demon: Entropy, Information, Computing. Chapter 4, Sec. 4.2. CRC Press, 1990.

[10] Bennett (2003, revised 2011). Bennett, C. H. Notes on Landauer’s Principle, Reversible Computation, and Maxwell’s Demon. arXiv:physics/0210005v2 [physics.class-ph], 9 Jan 2003. https://arxiv.org/pdf/physics/0210005.pdf; https://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2013W/Bennett_Reversibiity.pdf

[11] Bernstein & Vazirani (1997). Bernstein, E., and Vazirani, U. V. Quantum Complexity Theory. SIAM Journal on Computing, 26(5), 1411-1473, 1997. A preliminary version of this paper appeared in the Proceedings of the 25th ACM Symposium on the Theory of Computing, 1993.

[12] Bohm (1952). Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. Physical Review, 85, 166-193, 1952. http://fma.if.usp.br/~amsilva/Artigos/p166_1.pdf

[13] Bohm & Hiley (1993). Bohm, D., and Hiley, B. J. The Undivided Universe. Routledge, London, 1993.

[14] Bohr (1928). Bohr, N. The Quantum Postulate and the Recent Development of Atomic Theory. Naturwissenschaften, 16(15), 245-257, 1928. (Bohr’s Como lecture (delivered on 16 September 1927)). http://www.psiquadrat.de/downloads/bohr28_como.pdf

[15] Bohr (1934). Bohr, N. Atomic Theory and Description of Nature, 1. Cambridge, 1934.

[16] Bohr (1935). Bohr, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review, 48, 696-702, 1935. https://journals.aps.org/pr/pdf/10.1103/PhysRev.48.696

[17] Bohr (1937). Bohr, N. Causality and Complementarity. Philosophy of Science, 4 (3), 1937. http://www.informationphilosopher.com/solutions/scientists/bohr/Causality_and_Complementarity.pdf

[18] Born (1926a). Born, M. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37 (12), 863–867, 1926. http://www.psiquadrat.de/downloads/born26_stossvorgaenge.pdf

[19] Born (1926b). Born, M. Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 38 (11-12), 803-827, 1926. English translation in Ludwig, G., (Ed.). Wave Mechanics, Pergamon Press, Oxford, 1968.

[20] Born (1954). Born, M. The Statistical Interpretation of Quantum Mechanics, Nobel Lecture, 11 December 1954, https://www.nobelprize.org/nobel_prizes/physics/laureates/1954/born-lecture.pdf

[21] Bose, et al (2017). Bose, S., et al. A Spin Entanglement Witness for Quantum Gravity. arXiv:1707.06050 [quant-ph], 19 July 2017, https://arxiv.org/abs/1707.06050

[22] Braunstein (1995). Braunstein, S. L., Quantum Computation, 1995. http://www-users.cs.york.ac.uk/~schmuel/comp/comp_best.pdf

[23] Braunstein & Pati (2007). Braunstein, S. L., and Pati, A. K. Quantum Information Cannot be Completely Hidden in Correlations: Implications for the Black-Hole Information Paradox. Physical Review Letters, 98 (080502), 2007. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.080502

[24] Byrne (2007). Byrne, P. The Many Worlds of Hugh Everett. Scientific American, December 2007. http://www.scientificamerican.com/article.cfm?id=hugh-everett-biography

[25] Chaitin (2003). Chaitin, G. J. Leibniz, Information, Math and Physics. arXiv:math/0306303v2 [math.HO], 21 Jun 2003. https://arxiv.org/pdf/math/0306303.pdf

[26] Churchill (1939). Churchill, W. The Russian Enigma. BBC Broadcast, 01 October 1939. http://www.churchill-society-london.org.uk/RusnEnig.html

[27] Cipra (1999). Cipra, B. A Prime Case of Chaos. What’s Happening in the Mathematical Sciences, 4, American Mathematical Society, 1999. http://www.ams.org/samplings/math-history/prime-chaos.pdf

[28] Deutsch (1985). Deutsch, D. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London; Series A, Mathematical and Physical Sciences, 400 (1818), 97–117, 1985. http://www.qubit.org/oldsite/resource/deutsch85.pdf.

[29] Deutsch (1997). Deutsch, D. The Fabric of Reality. Penguin Books, New York, 1997.

[30] Deutsch (2009). Deutsch, D. A New Way to Explain Explanation. TEDGlobal 2009, July 2009. https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation

[31] Deutsch (2012). Deutsch, D. Creative Blocks. Aeon, 03 October 2012. https://aeon.co/essays/how-close-are-we-to-creating-artificial-intelligence

[32] Deutsch, Barenco & Ekert (1995). Deutsch, D., Barenco, A., and Ekert, A. Universality in Quantum Computation. Proceedings of the Royal Society of London A, 449, 669-677, 1995.

[33] Dirac (1939). Dirac, P. A. M. A New Notation for Quantum Mechanics. Mathematical Proceedings of the Cambridge Philosophical Society. 35 (3), 416–418, 1939. http://www.ifsc.usp.br/~lattice/wp-content/uploads/2014/02/Dirac_notation.pdf

[34] Dirac (1958). Dirac, P. A. M. The Principles of Quantum Mechanics, 4th Ed. Oxford University Press, 1958.

[35] DiVincenzo (1995). DiVincenzo, D. P. Two-bit Gates are Universal for Quantum Computation. Physical Review A, 50, 1015-1022, 1995. Also at https://arxiv.org/abs/cond-mat/9407022

[36] Einstein, Podolsky & Rosen (1935). Einstein, A., Podolsky, B., and Rosen, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review, 47, 777-780, 1935. https://journals.aps.org/pr/pdf/10.1103/PhysRev.47.777

[37] Everett (1957a). Everett, H. On the Foundations of Quantum Mechanics. Ph.D. thesis, Princeton University, Department of Physics, 1957.

[38] Everett (1957b). Everett, H. “Relative State” Formulation of Quantum Mechanics. Reviews of Modern Physics, 29 (3), 454-462, July 1957. http://www.univer.omsk.su/omsk/Sci/Everett/paper1957.html

[39] Everett (1963). Everett, H. Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources. Operations Research, 11 (3), June 1963, 399 – 417, 1963. http://www.hpca.ual.es/~jjsanchez/references/Generalized_Lagrange_multiplier_method_for_solving_problems_of_optimum_allocation_of_resources.pdf

[40] Feynman (1965). Feynman, R.P. The Character of Physical Law. The Modern Library, New York, 1994. (Originally published by BBC in 1965.)

[41] Fredkin & Toffoli (1982). Fredkin, E., and Toffoli, T. Conservative Logic. International Journal of Theoretical Physics, 21, 219-253, 1982. http://calculemus.org/logsoc03/materialy/ConservativeLogic.pdf

[42] Gidney (2016). Gidney, C. Bra-Ket Notation Trivializes Matrix Multiplication. Algorithmic Assertions, 27 November 2016. http://algassert.com/post/1629

[43] Gutzwiller (1990). Gutzwiller, M. C. Chaos in Classical and Quantum Mechanics. Springer, New York, 1990.

[44] Handsteiner, et al (2017). Handsteiner, J., et al. Cosmic Bell Test: Measurement Settings from Milky Way Stars. Physical Review Letters, 118 (060401), 07 February 2017. https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.118.060401

[45] Heisenberg (1927). Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43 (3-4), 172-198, 1927. https://people.isy.liu.se/jalar/kurser/QF/references/Heisenberg1927.pdf English translation in (Wheeler and Zurek, 1983), pp. 62-84. Another English translation (The Actual Content of Quantum Theoretical Kinematics and Mechanics), available as NASA TM 77379 (December 1983) https://ia600500.us.archive.org/10/items/nasa_techdoc_19840008978/19840008978.pdf

[46] Heisenberg (1974). Heisenberg, W. Across the Frontiers. Harper & Row, New York, 1974.

[47] Hensen, et al (2015). Hensen, B. et al. Loophole-free Bell Inequality Violation using Electron Spins Separated by 1.3 kilometres. Nature, 526, 682–686, 29 October 2015. Preprint at https://arxiv.org/abs/1508.05949 (2015)

[48] Hilgevoord & Uffink (2016). Hilgevoord, J., and Uffink, J. The Uncertainty Principle, The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.). https://plato.stanford.edu/entries/qt-uncertainty/

[49] Jammer (1974). Jammer, M. The Philosophy of Quantum Mechanics. Wiley & Sons, New York, 1974.

[50] Kreyszig (2011). Kreyszig, E. Advanced Engineering Mathematics, 10th Ed. Wiley Plus, 2011. http://instructor.sdu.edu.kz/~merey/Advanced%20Engineering%20Mathematics%2010th%20Edition.pdf

[51] Laloë (2001). Laloë, F. Do We Really Understand Quantum Mechanics? Strange Correlations, Paradoxes, and Theorems. American Journal of Physics, 69 (6), 655-701, 2001. http://hal.archives-ouvertes.fr/docs/00/02/75/08/PDF/mq-anglais.pdf Correction at American Journal of Physics, 70, 556, 2002. http://aapt.scitation.org/doi/abs/10.1119/1.1466818

[52] Lamb (1932). Lamb, H. Hydrodynamics. Cambridge University Press, 1932.

[53] Landauer (1961). Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development, 5 (3), 183-191, 1961. Reprinted in IBM Journal of Research and Development, 44 (1-2), 261-269, January/March 2000. http://www.pitt.edu/~jdnorton/lectures/Rotman_Summer_School_2013/thermo_computing_docs/Landauer_1961.pdf

[54] Lecerf (1963). Lecerf, Y. Machines de Turing réversibles. Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences, 257, 2597–2600, Séance du 28 Octobre 1963. http://vadeker.net/corpus/reversible/turing.html

[55] Lloyd (1995). Lloyd, S. Almost Any Quantum Logic Gate is Universal. Physical Review Letters, 75(2), 346-349, 1995. http://capem.buffalo.edu/rashba/p346_1.pdf

[56] Luo, et al (2017). Luo, M-N., Li, H-R., Lai, H., & Wang, X. Unified Quantum No-Go Theorems and Transforming of Quantum States in a Restricted Set. arXiv:1701.04166v2 [quant-ph], 19 March 2017, https://arxiv.org/pdf/1701.04166.pdf

[57] Marquardt & Püttmann (2008). Marquardt, F and Püttmann, A. Introduction to Dissipation and Decoherence in Quantum Systems. arXiv:0809.4403v1 [quant-ph] 25 September 2008. https://arxiv.org/pdf/0809.4403.pdf

[58] Merali (2015). Merali, Z. Toughest Test Yet for Quantum ‘Spookiness’. Nature, 525, 14-15, 03 September 2015 http://www.nature.com/polopoly_fs/1.18255!/menu/main/topColumns/topLeftColumn/pdf/nature.2015.18255.pdf

[59] Mermin (2004). Mermin, N. D. Could Feynman have Said This? Physics Today, 57 (5), 10-11, May 2004. http://physicstoday.scitation.org/doi/10.1063/1.1768652

[60] Muller (1956). Muller, D. E. Complexity in Electronic Switching Circuits. IRE Transactions on Electronic Computers, EC-5 (1), 15-19, March 1956.

[61] Nielsen & Chuang (2000). Nielsen, M. A., and ‎Chuang, I. L. Quantum Computation and Quantum Information. Cambridge University Press, 2000. Errata at http://www.squint.org/qci/

[62] Orlov, et al (2012). Orlov, A. O., et al. Experimental Test of Landauer’s Principle at the Sub-kBT Level. Japanese Journal of Applied Physics, 51 (06FE10), 1-5, 2012.
https://www3.nd.edu/~lent/pdf/nd/OrlovExperimentalTestLandauerJJAP.pdf

[63] Passon (Undated). Passon, O. Understanding Niels Bohr: A guide through the Literature. http://www.psiquadrat.de/html_files/bohr.html

[64] Pati (Undated). Pati, A., Quantum Information—The No-Hiding Theorem, http://www.hri.res.in/~akpati/bh01.pdf

[65] Pati & Braunstein (2000). Pati, A. K., and Braunstein, S. L. Impossibility of Deleting an Unknown Quantum State, Nature, 404, 164-5, 09 March 2000. http://www-users.cs.york.ac.uk/~schmuel/papers/pb00.pdf

[66] Penrose (1989). Penrose, R. The Emperor’s New Mind. Oxford University Press, 1989.

[67] Peres (2002). Peres, A. How the No-cloning Theorem Got its Name. axXiv:quant-ph/0205076v1, 14 May 2002. http://arxiv.org/PS_cache/quant-ph/pdf/0205/0205076v1.pdf

[68] Peres & Terno (2004). Peres, A., and Terno, D. R. Quantum Information and Relativity Theory. Reviews of Modern Physics, 76, 93-123, 2004. Also at https://arxiv.org/pdf/quant-ph/0212023.pdf

[69] Peskin & Schroeder (1995). Peskin, M. E., and Schroeder, D. V. An Introduction to Quantum Field Theory. Westview Press, 1995. http://www.fulviofrisone.com/attachments/article/483/Peskin,%20Schroesder%20-%20An%20introduction%20To%20Quantum%20Field%20Theory(T).pdf

[70] Plenio & Vitelli (2001). Plenio, M. B., and Vitelli, V. The Physics of Forgetting: Landauer’s Erasure Principle and Information Theory. Contemporary Physics, 42 (1), 25-60, 2001. https://arxiv.org/pdf/quant-ph/0103108.pdf

[71] Pool (1989). Pool, R. Quantum Chaos: Enigma Wrapped in a Mystery. Science, 243 (4893), 893-895, 17 February 1989. http://www.quantware.ups-tlse.fr/chirikov/archive/itogo/hatom.pdf

[72] Popper (1963). Popper, K. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, 1963.

[73] Preskill (2015). Preskill, J. Who Named the Qubit? Quantum Frontiers, 09 June 2015. https://quantumfrontiers.com/2015/06/09/who-named-the-qubit/

[74] Rieffel & Polak (2000). Rieffel, E. G., and Polak, W. An Introduction to Quantum Computing for Non-Physicists, ACM Computing Surveys, 32, 300-335, 2000. Also at https://arxiv.org/pdf/quant-ph/9809016.pdf

[75] Renkel (2017). Renkel, P. Building a Bridge between Classical and Quantum Mechanics. arXiv:1701.04698v2 [physics.gen-ph], 06 November 2017, https://arxiv.org/pdf/1701.04698.pdf

[76] Resnick (2017). Resnick, B. Gravitational Waves, Explained. Vox, 03 October 2017, https://www.vox.com/science-and-health/2017/10/3/16408730/nobel-prize-2017-physics-graviational-waves-ligo-kip-thorne-rainer-weiss-barry-barish-virgo

[77] RSAS (2006). Cosmology and the Cosmic Microwave Background. The Royal Swedish Academy of Sciences, 03 October 2006. https://www.nobelprize.org/nobel_prizes/physics/laureates/2006/advanced-physicsprize2006.pdf

[78] RSAS (2017). Press Release: The Nobel Prize in Physics 2017. The Royal Swedish Academy of Sciences, 03 October 2017. https://www.nobelprize.org/nobel_prizes/physics/laureates/2017/press.html

[79] Schumacher (1995). Schumacher, B. Quantum Coding. Physical Review A, 51 (4), April 1995. http://web.mit.edu/6.962/www/www_spring_2001/yonina/schumacher.pdf

[80] Seife (2005). Seife, C. Do Deeper Principles Underlie Quantum Uncertainty and Nonlocality? Science, 309 (5731), 98, 01 July 2005. http://science.sciencemag.org/content/309/5731/98/tab-pdf

[81] Shannon (1948). Shannon, C. E. A Mathematical Theory of Communication. Reprinted with corrections from The Bell System Technical Journal, 27, 379–423, 623–656, July and October 1948. https://www.cs.ucf.edu/~dcm/Teaching/COP5611-Spring2012/Shannon48-MathTheoryComm.pdf

[82] Shor (1995). Shor, P. W. Scheme for Reducing Decoherence in Quantum Computer Memory. Physical Review A, 52 (4), R2493-R2496, October 1995. http://www.cs.miami.edu/home/burt/learning/Csc670.052/pR2493_1.pdf

[83] Susskind & Friedman (2015). Susskind, L., and Friedman, A. Quantum Mechanics – The Theoretical Minimum. Penguin Books, 2015.

[84] Tegmark (2014). Tegmark, M. Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf, 2014.

[85] Thachuk (2013). Thachuk, C. Logically and Physically Reversible Natural Computing: A Tutorial. G.W. Dueck and D.M. Miller (Eds.): RC 2013, LNCS 7948, Springer, pp. 247–262, 2013. http://www.veriware.org/papers/Tha13.pdf

[86] Toffoli (1980). Toffoli, T. Reversible Computing. MIT Technical Report MIT/LCS/TM-151, 1980. http://pm1.bu.edu/~tt/publ/revcomp-rep.pdf.

[87] Toyabe, et al (2010a). Toyabe, S., et al. Information Heat Engine: Converting Information to Energy by Feedback Control. arXiv:1009.5287v2 [cond-mat.stat-mech], 29 September 2010. http://arxiv.org/pdf/1009.5287.pdf

[88] Toyabe, et al (2010b). Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., and Sano, M. Experimental Demonstration of Information-to-Energy Conversion and Validation of the Generalized Jarzynski Equality. Nature Physics, 6, 988-992, 2010. http://www.nature.com/nphys/journal/v6/n12/full/nphys1821.html

[89] Turing (1936). Turing, A. M. On Computable Numbers, with an Application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, S2-42 (1), 230-265, 1936-1937. https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf Correction at: Turing, A. M., On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction. S2-43 (1), 544–546, 1938. http://www.turingarchive.org/viewer/?id=466&title=02

[90] Vizzotto, Altenkirch, & Sabry (2005). Vizzotto, J. K., Altenkirch, T., and Sabry, A. Quantum Effects. Yale CS Colloquium, 20 January 2005. http://www.cs.indiana.edu/~sabry/papers/quantum-effects-yale.pdf

[91] Wheeler (1963). Wheeler, J. A. “No Fugitive and Cloistered Virtue” – A Tribute to Niels Bohr. Physics Today, 16, 30-32, January 1963.

[92] Wheeler (1989). Wheeler, J. A. Information, Physics, Quantum: The Search for Links. Proceedings of the 3rd International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, Japan, 1989, 354-368. http://cqi.inf.usi.ch/qic/wheeler.pdf

[93] Wootters & Zurek (1982). Wootters, W. K., and Zurek, W. H. A Single Quantum Cannot be Cloned. Nature, 299, 802-803, 1982. http://pm1.bu.edu/~tt/qcl/pdf/wootterw198276687665.pdf

[94] Zukav (1979). Zukav, G. The Dancing Wu Li Masters: An Overview of the New Physics. Rider & Co., 1979.

[95] Zwiebach (2013). Zwiebach, B. Dirac’s Bra and Ket Notation. 8.05 Quantum Physics II, MIT OpenCourseWare, Fall 2013, 07 October 2013. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture-notes/MIT8_05F13_Chap_04.pdf

Pages ( 13 of 13 ): « Previous1 ... 1112 13

Leave a Comment:

Your email address will not be published. Required fields are marked *